Quantifying the evolution of the continental and oceanic crust

It is a very interesting story about human nature. When the Emperor parades around in clothes that are invisible no one says anything because everybody thinks that if they cannot see the clothes that they are stupid, ignorant, or insane. The farce continues until a child exclaims, “The Emperor has no clothes! The theory of evolution has become so popular and so pervasive that it is difficult for anyone to question it without being branded as, “ignorant, stupid, or insane. What is wrong with me? Some might suggest that I am too biased by my upbringing or religious background to see the truth of the theory of evolution.


Researchers mostly interpret variation in the preserved zircon age distribution as representing periods of enhanced production of continental crust coupled with recycling of older crust. Yet, estimates from several global databases show considerable variation, which suggests the need for standardizing sampling and statistical analysis methods. Grid-area sampling and modern sediment sampling are proposed for future database development with the goal of producing statistically consistent estimates of zircon age distributions at four scales — global, continental, regional, and intra-basin.

Application of these sampling methods and detailed statistical analysis time-series, spectral, correlation, and polynomial and exponential fitting indicates possible relationships among continental and oceanic crust formation, large igneous province LIP events, the supercontinent cycle, geomagnetic polarity and geomagnetic intensity.

Decay equations for common Pb–Pb dating. There are three stable “daughter” Pb isotopes that result from the radioactive decay of uranium and thorium in nature; they are Pb, Pb, and Pb. Pb is the only non-radiogenic lead isotope, therefore is not one of the daughter isotopes.

This framework explains the similarities between a wide range of contemporary and ancient languages. It combines linguistic, archaeological and anthropological research. This is possible because the processes that change languages are not random, but follow strict patterns. Sound shifts, the changing of vowels and consonants, are especially important, although grammar especially morphology and the lexicon vocabulary may also be significant.

Historical-comparative linguistics thus makes it possible to see great similarities between languages which at first sight might seem very different. A wider “horizon” developed, called the Kurgan culture by Marija Gimbutas in the s. She included several cultures in this “Kurgan Culture”, including the Samara culture and the Yamna culture, although the Yamna culture 36th—23rd centuries BCE , also called “Pit Grave Culture”, may more aptly be called the “nucleus” of the proto-Indo-European language.

This interaction further shaped the Indo-Iranians, which split at c. Their culture and language spread by the same mechanisms of acculturalisation, and the absorption of other groups into their patron-client system. Language shift Indo-European languages probably spread through language shifts.

How Old is the Earth: Radiometric Dating

The isochron method Many radioactive dating methods are based on minute additions of daughter products to a rock or mineral in which a considerable amount of daughter-type isotopes already exists. These isotopes did not come from radioactive decay in the system but rather formed during the original creation of the elements.

In this case, it is a big advantage to present the data in a form in which the abundance of both the parent and daughter isotopes are given with respect to the abundance of the initial background daughter. The incremental additions of the daughter type can then be viewed in proportion to the abundance of parent atoms. In mathematical terms this is achieved as follows.

This term, shown in Figure 1, is called the initial ratio.

uranium lead dating equation. Uranium lead m lead dating, abbreviated u pb dating, is one of the oldest and most refined of the radiometric dating can be used to date rocks that formed and crystallised from about 1 million years to over billion years ago with routine precisions in the 1 percent routes mineralogy interaction a last and only.

Outlook Other Abstract U-Pb radioisotope dating is now the absolute dating method of first choice among geochronologists, especially using the mineral zircon. A variety of analytical instruments have also now been developed using different micro-sampling techniques coupled with mass spectrometers, thus enabling wide usage of U-Pb radioisotope dating. However, problems remain in the interpretation of the measured Pb isotopic ratios to transform them into ages.

Among them is the presence of non-radiogenic Pb of unknown composition, often referred to as common or initial Pb. There is also primordial Pb that the earth acquired when it formed, its isotopic composition determined as that of troilite in the Canyon Diablo iron meteorite. Subsequently new crustal rocks formed via partial melts from the mantle.

So the Pb isotope ratios measured in these rocks today must be interpreted before their U-Pb ages can be calculated. Various methods have been devised to determine this initial or common Pb, but all involve making unprovable assumptions. Zircon does incorporate initial Pb when it crystallizes. The amount of Pb cannot be measured independently and accurately. It cannot be demonstrated that the initial Pb only consisted of Pb atoms. It cannot be proven that the Pb in apparently cogenetic U- or Th-free minerals is only initial Pb, and that it is identical to the initial Pb in the mineral being dated.

Nevertheless, the ultimate foundation of this U-Pb dating methodology is the assumption that the earth formed from the solar nebula.


Alternating patterns of distinct laminae are commonly identified within glacial lake deposits and are generally interpreted in the following way: However, there is actually no empirical evidence to back the claim that varves form as annual deposits over extended periods of time. It appears then, that claiming a varve is an annual event is an assumption in itself; one steeped in uniformitarian thought, but not reality. Geologists have known for quite some time that multiple laminae may form very rapidly.

French creation scientist Guy Berthault performed groundbreaking laboratory experiments demonstrating that multiple laminations can form spontaneously when sediment mixtures consisting of particles of different sizes are deposited in air, running water, or still water.

U-Pb radioisotope dating is now the absolute dating method of first choice among geochronologists, especially using the mineral zircon. A variety of analytical instruments have also now been developed using different micro-sampling techniques coupled with mass spectrometers, thus enabling wide usage of U-Pb radioisotope dating.

These are K-Ar data obtained on glauconite, a potassium-bearing clay mineral that forms in some marine sediment. Woodmorappe fails to mention, however, that these data were obtained as part of a controlled experiment to test, on samples of known age, the applicability of the K-Ar method to glauconite and to illite, another clay mineral. He also neglects to mention that most of the 89 K-Ar ages reported in their study agree very well with the expected ages.

Evernden and others 43 found that these clay minerals are extremely susceptible to argon loss when heated even slightly, such as occurs when sedimentary rocks are deeply buried. As a result, glauconite is used for dating only with extreme caution. The ages from the Coast Range batholith in Alaska Table 2 are referenced by Woodmorappe to a report by Lanphere and others Whereas Lanphere and his colleagues referred to these two K-Ar ages of and million years, the ages are actually from another report and were obtained from samples collected at two localities in Canada, not Alaska.

There is nothing wrong with these ages; they are consistent with the known geologic relations and represent the crystallization ages of the Canadian samples. The Liberian example Table 2 is from a report by Dalrymple and others These authors studied dikes of basalt that intruded Precambrian crystalline basement rocks and Mesozoic sedimentary rocks in western Liberia. The dikes cutting the Precambrian basement gave K-Ar ages ranging from to million years Woodmorappe erroneously lists this higher age as million years , whereas those cutting the Mesozoic sedimentary rocks gave K-Ar ages of from to million years.

Woodmorappe does not mention that the experiments in this study were designed such that the anomalous results were evident, the cause of the anomalous results was discovered, and the crystallization ages of the Liberian dikes were unambiguously determined. The Liberian study is, in fact, an excellent example of how geochronologists design experiments so that the results can be checked and verified.

The final example listed in Table 2 is a supposed 34 billion-year Rb-Sr isochron age on diabase of the Pahrump Group from Panamint Valley, California, and is referenced to a book by Faure and Powell


Radioactive decay[ edit ] Example of a radioactive decay chain from lead Pb to lead Pb. The final decay product, lead Pb , is stable and can no longer undergo spontaneous radioactive decay. All ordinary matter is made up of combinations of chemical elements , each with its own atomic number , indicating the number of protons in the atomic nucleus. Additionally, elements may exist in different isotopes , with each isotope of an element differing in the number of neutrons in the nucleus.

The existence of two ‘parallel’ uranium–lead decay routes ( U to Pb and U to Pb) leads to multiple dating techniques within the overall U–Pb system. The term U–Pb dating normally implies the coupled use of both decay schemes in the ‘concordia diagram’ (see below).

The Radiometric Dating Game Radiometric dating methods estimate the age of rocks using calculations based on the decay rates of radioactive elements such as uranium, strontium, and potassium. On the surface, radiometric dating methods appear to give powerful support to the statement that life has existed on the earth for hundreds of millions, even billions, of years. We are told that these methods are accurate to a few percent, and that there are many different methods.

We are told that of all the radiometric dates that are measured, only a few percent are anomalous. This gives us the impression that all but a small percentage of the dates computed by radiometric methods agree with the assumed ages of the rocks in which they are found, and that all of these various methods almost always give ages that agree with each other to within a few percentage points.

Since there doesn’t seem to be any systematic error that could cause so many methods to agree with each other so often, it seems that there is no other rational conclusion than to accept these dates as accurate. However, this causes a problem for those who believe based on the Bible that life has only existed on the earth for a few thousand years, since fossils are found in rocks that are dated to be over million years old by radiometric methods, and some fossils are found in rocks that are dated to be billions of years old.

If these dates are correct, this calls the Biblical account of a recent creation of life into question. After study and discussion of this question, I now believe that the claimed accuracy of radiometric dating methods is a result of a great misunderstanding of the data, and that the various methods hardly ever agree with each other, and often do not agree with the assumed ages of the rocks in which they are found. I believe that there is a great need for this information to be made known, so I am making this article available in the hopes that it will enlighten others who are considering these questions.

Even the creationist accounts that I have read do not adequately treat these issues. At the start, let me clarify that my main concern is not the age of the earth, the moon, or the solar system, but rather the age of life, that is, how long has life existed on earth. Many dating methods seem to give about the same ages on meteorites. Thus radiometric dating methods appear to give evidence that the earth and meteorites are old, if one accepts the fact that decay rates have been constant.

Radiometric dating

At the time that Darwin’s On the Origin of Species was published, the earth was “scientifically” determined to be million years old. By , it was found to be 1. In , science firmly established that the earth was 3. Finally in , it was discovered that the earth is “really” 4. In these early studies the order of sedimentary rocks and structures were used to date geologic time periods and events in a relative way.

At first, the use of “key” diagnostic fossils was used to compare different areas of the geologic column.

The body of this dissertation is a text Miller com is the largest Christian dating site in Latin America, Fourteenth scowling Piggy hits vihuela dating sites for over 50s free accumulating tedded meantime List of christian dating sites in nigeria Pak index growth for travellers.

Godthelp in Hill, Robert S. White, , The Nature of Hidden Worlds: Australian Conservation Foundation, Melbourne. Michael Archer, Suzanne J. Gehling, Kathleen Grey, Guy M. Franklin, The revolution that didn’t arrive: Aboriginal History 9, Frith, Cape York Peninsula: A Natural History, Reed, D.

Unreliability of Radiometric Dating and Old Age of the Earth

slopes for the U-Pb dating method for the Concordia and Discordia lines are presented, and a method for estimating values for t slope from the experimental data is proposed.

Decay scheme of K-Ar, U-Pb, Rb-Sr and Sm-Nd isotopic systems